分数の足し算と引き算の画像

分数の足し算や引き算は、多くの子供がつまずきやすい単元の1つです。

特に通分をする必要がある”分母が違うときの計算”は、大人でも説明に悩むことがありますよね。

この記事では、分数の足し算・引き算の基本的な教え方を、図や具体例を使って分かりやすく解説をします。このページにある画像を保存して、そのまま子どもたちに見せて説明することもできます。

数学の先生

楽しく分数を伝えたい人におすすめですよ!

↑↑↑学校の先生におすすめ!!

なぜ分数の計算でつまずくのか?

分数の足し算や引き算でつまずく理由の1つは、分数を足したり引いたりするイメージが持ちにくいからです。

例えば3ー2という問題であれば、「3個のリンゴから、2個食べたら残りは何個?」というイメージを頭の中ですぐに描くことができますが、「2/3ー1/3」という問題になると、なぜ分母同士は計算をしなのか、なぜ分子だけを計算をするのかなど、イメージをすることが難しくなります。

更に分母の数字が違う「1/2+1/3」という計算となると、なぜそのまま計算してはいけないのか?なぜ通分しなくてはいけないのか?より子どもを混乱させてしまいます。

どちらも、”イメージしにくい”ということが、つまずく原因となるので、視覚的に子どもの理解を促すことが重要になります。

分数の基本をしっかり押さえよう

分数の足し算と引き算の画像

まずは分数の基本的な概念をしっかりと押さえましょう。

大切なのは、分数は「1つのものを”何個に分けたうちの何個分か”を表している」ということです。たとえば、「1/2」は、「1つのケーキを、”2個に分けたうちの1つ分”」という意味になります。

また、「同じ分母の分数同士しか、足したり引いたりできない」というルールもポイントです。分母の違う分数の場合は、分数の大きさを揃える、”通分”をする必要があります。

分母が同じときのたし算とひき算

分数の足し算と引き算の画像

1/2+1/2→「2つに分けたうちの1つ分」と「2つに分けたうちの1つ分」を足すと、「2つに分けたうちの2つ分」となり、1になります。

分数の足し算と引き算の画像

1/3+1/3→「3つに分けたうちの1つ分」と「3つに分けたうちの1つ分」を足すと、「3つに分けたうちの2つ分」となり、2/3になります。

分数の足し算と引き算の画像

引き算のときも同じように考えます。

7/9-5/9→「9つに分けたうちの7つ分」から「9つに分けたうちの5つ分」を引くと、「9つに分けたうちの2つ分」となり、2/9となります。

分母が同じ数字の場合は、比較的簡単にイメージすることができます。

分母が違うときはどうする?

分母が違うときはどうでしょうか?

分数の足し算と引き算の画像

よく、「分母の違う分数は足すことができない」と教わったことがある人がいるかもしれませんが、それは正確ではありません。

実際には1/2+1/3のような、違う分母の分数を足すと画像のようになります。

足すことはできても数字で表すことが難しいので、通分をします。

分数の足し算と引き算の画像

「2つに分けたうちの1つ」を「6つに分けたうちの3つ」とし、「3つに分けたうちの1つ」を「6つに分けたうちの2つ」とします。

「6つに分けたうちの3つ」と「6つに分けたうちの2つ」を足すと、「6つに分けたうちの5つ」となります。

これを数字で表すと1/2+1/3=3/6+2/6=5/6となります。

分数の足し算と引き算の画像

別の例で見てみましょう。

「4つに分けたうちの3つ」を「8つに分けたうちの6つ」とし、「2つに分けたうちの1つ」を「8つに分けたうちの4つ」とします。

「8つに分けたうちの6つ」と「8つに分けたうちの4つ」を足すと、「8つに分けたうちの10個」となります。

これを数字で表すと3/4+1/2=6/8+4/8=10/8=5/4となります。

まとめ

いかがだったでしょうか?

この記事にある画像を見せながらこれらの説明をすることで、子供は分数のイメージを頭の中で描くことができるので、分数の足し算と引き算を理解することができます。

この記事が分数の足し算と引き算を教える人にとって、参考になれば幸いです。

↑↑↑子供の学習や大人の脳トレに最適!!

投稿者プロフィール

管理者
管理者
現役で数学を教えている中学校の先生です。中学の数学のプリントやICT関連の情報、ブログでは道徳や学級レクのネタも発信しています。
このサイトはアフィリエイト広告(Amazonアソシエイト含む)を掲載しています。